lunes, 24 de diciembre de 2018

Farout, el nuevo planeta enano descubierto en los confines del Sistema Solar

Recreación artística de 2018 VG18 'Farout'. ROBERTO MOLAR/CARNEGIE

Según ha confirmado el Centro de Planetas Menores de la Unión Astronómica Internacional, se trata también del cuerpo celeste más lejano descubierto en el Sistema Solar. 2018 VG18 desbanca, así, al pequeño Eris, considerado hasta ahora como el más alejado de la Tierra.La lista de planetas enanos en la que se metió a Plutón en 2006 tiene desde este lunes un nuevo miembro. Un equipo de astrónomos ha anunciado el descubrimiento de un mundo, desconocido hasta ahora, en los confines del Sistema Solar. Ha sido bautizado oficialmente como 2018 VG18 y apodado con el nombre de Farout, que en inglés significa lejano, remoto o extremo.
Según ha explicado en un comunicado la Institución para la Ciencia Carnegie de Washington, donde investiga Scott S. Sheppard, uno de sus descubridores, Farout es el primer cuerpo celeste del Sistema Solar que se detecta a una distancia cien veces mayor de la que separa la Tierra del Sol. Esta separación entre la Tierra y el Sol, que es de unos 150 millones de kilómetros, se denomina Unidad Astronómica (UA) y sirve para medir las grandes distancias que hay en el cosmos.
Farout se encuentra a 120 UA, mientras Eris está a 96 UA. Plutón, por su parte, está a 34 UA, por lo que el nuevo planeta enano estaría tres veces más lejos que él. Detectar un cuerpo tan lejano ha sido posible combinando varios telescopios. Las primeras imágenes fueron obtenidas el pasado 10 de noviembre con el telescopio japonés Subaru, de ocho metros, situado en el Mauna Kena de Hawai. Posteriormente, se inició una campaña de observación que se prolongó durante varias noches para confirmar la existencia de este planeta enano, que fue capturado por segunda vez a principios de diciembre desde el telescopio Magellan, en el observatorio chileno de Las Campanas. También fue en Chile donde pudieron estimar que el planeta se encuentra a una distancia de 120 Unidades Astronómicas.

500 km de diámetro

El anuncio no se ha hecho esperar y ha llegado en pleno boom de descubrimientos de planetas fuera del Sistema Solar o exoplanetas. Pese a que este campo es uno de los más florecientes en astronomía, hay muchos científicos intentando averiguar si verdaderamente existe el denominado Planeta X o Planeta 9, del que hasta la fecha sólo se han obtenido algunos indicios indirectos. La posible existencia de este lejano mundo que, de confirmarse, constituiría el noveno planeta del Sistema Solar, fue propuesta en 2014 por el mismo equipo de astrónomos que ahora ha detectado a Farout.
"2018 VG18 está mucho más lejos y se mueve más despacio que cualquier otro objeto observado en el Sistema Solar, así que tardaremos unos cuantos años en determinar su órbita. Sin embargo, ha sido localizado en la misma región del cielo que otros objetos extremos del Sistema Solar, lo que sugiere que podría seguir una órbita similar a la de la mayoría de esos cuerpos", explica Sheppard en el comunicado.
De momento, añade David Tholen, investigador de la Universidad de Hawai y otro de los descubridores, lo único que saben es que este planeta enano está "extremadamente alejado del Sol, su diámetro aproximado y su color. Así, su brillo sugiere que mide unos 500 kilómetros de diámetro, que su forma es probablemente esférica y que tiene tonalidades rosadas, un color generalmente asociado a cuerpos que contienen gran cantidad de hielo.
"Debido a la gran distancia a la que se encuentra", dice Tholen, "probablementetarde más de mil años en dar una vuelta alrededor del Sol".
Fuente: https://www.elmundo.es/ciencia-y-salud/ciencia/2018/12/17/5c181202fdddff42668b4642.html

viernes, 21 de diciembre de 2018

Cuatro nuevas ondas gravitacionales, y ya van once

La colaboración científica LIGO y Virgo ha anunciado la detección de cuatro ondas gravitatorias fruto de la fusión de agujeros negros de masa estelar. La Universitat de les Illes Balears ha contribuido a la observación y análisis de las señales. Los observatorios publican el primer catálogo de acontecimientos de ondas gravitacional.




La Colaboración Científica LIGO y VIRGO, su homólogo europeo, han anunciado cuatro nuevas detecciones de ondas gravitacionales fruto de la fusión de agujeros negros de masa estelar. Estos resultados, procedentes de los detectores de ondas gravitacionales LIGO, operados por la Fundación Nacional para la Ciencia de los Estados Unidos (NSF) y Virgo, se dieron a conocer el sábado 1 de diciembre, en el marco del Congreso de Física de Ondas Gravitacionales y Astronomía, que ha tenido lugar en la ciudad de College Park (Maryland, EE UU).

Hasta el momento, LIGO y Virgo han permitido detectar en total diez fusiones de agujeros negros de masa estelar y una fusión de estrellas de neutrones, que son los restos densos y esféricos del colapso de estrellas. De estas diez fusiones de agujeros negros, hay cuatro que corresponden a la nueva tanda de detecciones, mientras que las seis restantes ya se habían presentado otras veces.

Las cuatro nuevas ondas han sido etiquetadas como GW170729, GW170809, GW170818, y GW170823 en referencia a la fecha de sus detecciones, que se produjeron en el segundo periodo de observación, entre el 30 de noviembre de 2016 y el 25 de agosto de 2017.

Todas están recogidas en el catálogo que fue publicado el pasado sábado, que incluye toda la información relativa en estos acontecimientos. 




Mapa de las once ondas gravitacionales detectadas. / UIB 

La contribución balear

El Grupo de Relatividad y Gravitación (GRG) de la Universitat de les Illes Balears (UIB), bajo la dirección de Alicia M. Sintes, ha hecho importantes contribuciones a la observación y análisis de las señales detectadas.

Una de las aportaciones clave de este grupo ha sido la provisión de modelos de señales procedentes de la fusión de sistemas binarios de agujeros negros. Estos modelos se utilizan para contrastar las predicciones de la teoría con los datos observados y son capaces de dar información sobre la masa de los agujeros negros involucrados, así como de la rotación o de las velocidades.

“Es muy satisfactorio observar que toda esta ardua tarea permite revelar y entender nuevas visiones del universo”, comenta Sascha Husa

“Pasamos la mayor parte del tiempo ante un ordenador, calculando. Es muy satisfactorio observar que toda esta ardua tarea permite revelar y entender nuevas visiones del universo. Los estudiantes y posdoctorados colaboran en una revolución científica. Me alegra saber que forman parte de esta experiencia tan extraordinaria”, comenta Sascha Husa, que ha dirigido los esfuerzos del grupo en el modelado de agujeros negros.

Uno de los investigadores posdoctorales del grupo de la UIB, Geraint Pratten, ha trabajado en el análisis de una de las nuevas detecciones, la GW170809: “La colaboración vive un periodo emocionante ante un número tan elevado de detecciones. La GW170809 es uno de los acontecimientos observados durante el segundo periodo de observación (O2) en los cuales están involucrados agujeros negros de elevada masa estelar. Es similar a la primera detección, la GW150914, y ayudará a conocer más bien la población de sistemas binarios de agujeros negros que observamos actualmente”.

El tercer periodo de observación (O3) empezará a principio de 2019, con una mejora de la sensibilidad de los detectores. Prevén detectar decenas de sistemas binarios a lo largo del año, y necesitarán modelos más precisos con el fin de extraer la máxima información posible de estos acontecimientos.

Alícia Sintes está emocionada por la creciente participación española en el campo de las ondas gravitacionales: “La comunidad española de ondas gravitacionales aumenta muy rápidamente. Hemos pasado de ser los únicos en el campo, hace tres años, a disponer de dos grupos en LIGO y tres en Virgo. Estamos orgullosos de haber allanado el camino”.

Además, también plantea los próximos retos: “Impulsamos la astronomía de ondas gravitacionales un poco más allá. Queremos observar ondas gravitacionales con la misión LISA de aquí a aproximadamente quince años. Trabajamos mucho para conseguir que nuestros estudiantes constituyan la vanguardia del campo en el futuro”.

Detecciones de récord

Algunas de estas nuevas detecciones han batido récords. Por ejemplo, el acontecimiento GW170729, detectado el día 29 de julio de 2017 durante el segundo periodo de observación. Este acontecimiento fue generado por la fuente de ondas gravitacionales más lejana y masiva hasta ahora nunca observada. Tuvo lugar hace aproximadamente cinco mil millones de años, y liberó una energía equivalente a cinco masas solares en forma de ondas gravitacionales.

“La comunidad española de ondas gravitacionales aumenta muy rápidamente. Estamos orgullosos de haber allanado el camino”, dice Sintes

El detector Advanced Virgo se unió al segundo periodo de observación el día 1 de agosto de 2017, y dio lugar a la primera detección simultánea de tres observatorios y a la primera relevante de Virgo: la colisión de agujeros negros GW170814. Este acontecimiento fue el primero a ser observado por tres detectores trabajando de manera simultánea, hecho que permitió analizar, por primera vez, la polarización de las ondas gravitacionales (análoga a la polarización de la luz).

El acontecimiento GW170817, detectado tres días después del GW170814, fue la primera observación de un acontecimiento procedente de la fusión de un sistema binario de estrellas de neutrones. Además, fue observado mediante luz, fijando un hito histórico a la astronomía de multimensajeros, en la cual los objetos cósmicos son observados simultáneamente mediante diferentes formas de radiación.

Finalmente, fue posible dar con mucha precisión la posición celeste de uno de los nuevos acontecimientos, el GW170818, detectado conjuntamente por la red de detectores formada por los observatorios LIGO y Virgo. La posición en la vuelta celeste de esta fusión de agujeros negros, situada a 2,5 miles de millones de años luz de la Tierra, fue identificada con una precisión de 39 grados cuadrados, convirtiéndola en la segunda mejor fuente de ondas gravitacionales en cuanto a su localización, solo por detrás de la fusión de estrellas de neutrones GW170817. Así, el acontecimiento GW170818 remarca el potencial científico que tiene la red de detectores de ondas gravitacionales que conforman LIGO y Virgo.

“El próximo periodo de observación, que empezará la primavera de 2019, conseguirá detectar más acontecimientos de ondas gravitacionales, y la ciencia que la comunidad puede conseguir crecer en consecuencia”, afirma David Shoemaker, portavoz de la Colaboración Científica de LIGO (LSC, en inglés) e investigador sénior al Instituto Kavli de Astrofísica e Investigación Espacial (MIT). "Vivimos un tiempo emocionante”.
Fuente: http://elblogantares.blogspot.com/2018/12/cuatro-nuevas-ondas-gravitacionales-y.html

lunes, 5 de noviembre de 2018

Las observaciones más detalladas de material orbitando cerca de un agujero negro

El instrumento GRAVITY de ESO confirma el estado del agujero negro que está en el centro de la Vía Láctea



El instrumento GRAVITY de ESO que se caracteriza por ser extremadamente sensible ha sumado más pruebas a la antigua suposición de que un agujero negro supermasivo se esconde en el centro de la Vía Láctea. Nuevas observaciones muestran aglomeraciones de gas girando a aproximadamente un 30% de la velocidad de la luz en una órbita circular justo a las afueras de su horizonte de sucesos. El primer material fue observado orbitando cerca del punto de no retorno, y las observaciones más detalladas ya muestran material orbitando muy cerca de un agujero negro.

El instrumento GRAVITY de ESO instalado en el interferómetro del Very Large Telescope(VLT) lo han usado científicos de un consorcio de instituciones europeas, incluyendo a ESO [1], para observar destellos de radiación infrarroja provenientes del disco de acreciónalrededor de Sagitario A*, el objeto masivo en el corazón de la Vía Láctea. Los destellos observados entregan la confirmación esperada por tanto tiempo de que el objeto en el centro de nuestra galaxia es, como se ha asumido por largo tiempo, un agujero negrosupermasivo. Los destellos se originan del material que orbita muy cerca del horizonte de sucesos del agujero negro, haciendo de éstas las observaciones más detalladas que existen de material orbitando tan cerca de un agujero negro. 

Mientras parte del material en el disco de acreción — el cinturón de gas que orbita Sagitario A* a velocidades relativistas [2] — puede orbitar el agujero negro de forma segura, cualquier cosa que se acerque demasiado está destinada a ser atraída más allá del horizonte de sucesos. El punto más cercano a un agujero negro que puede orbitar ese material sin ser inevitablemente atraído hacia dentro por la inmensa masa se conoce como la órbita estable más cercana, y es desde aquí que se originan los destellos observados. 

"Es alucinante ver efectivamente material orbitando un agujero negro masivo a un 30% de la velocidad de la luz”, dijo maravillado Oliver Pfuhl, científico en el Instituto Max Planck de Física Extraterrestre (MPE). “La gran sensibilidad de GRAVITY nos ha permitido observar los procesos de acreción en tiempo real con un nivel de detalle sin precedentes”.

Estas mediciones sólo fueron posibles gracias a la colaboración internacional y a instrumentos dotados de la tecnología más avanzada [3]. El instrumento GRAVITY que hizo posible este trabajo combina la luz de cuatro telescopios del VLT de ESO para crear un súper telescopio virtual de 130 metros de diámetro, y ya ha sido usado para explorar la naturaleza de Sagitario A*.



La vista del amplio campo de luz visible muestra ricas nubes de estrellas en la constelación de Sagitario (el Arquero) en la dirección del centro de nuestra galaxia, la Vía Láctea. La imagen completa está llena de un vasto número de estrellas, pero muchas más permanecen escondidas tras las nubes de polvo y sólo son reveladas en imágenes infrarrojas como la panorámica de VISTA. Esta visión fue creada a partir de fotografías en luz roja y azul, y forman parte del Digitized Sky Survey 2. El campo de visión es de aproximadamente 3,5 grados por 3,6 grados.

A principios de este año, GRAVITY y SINFONI, otro instrumento del VLT, le permitieron al mismo equipo medir con exactitud el sobrevuelo cercano de la estrella S2 a medida que pasaba por el intenso campo gravitatorio que hay cerca de Sagitario A*, y por primera vez esto reveló los efectos previstos por la relatividad general de Einstein en un ambiente así de extremo. Durante el sobrevuelo cercano de S2, se observó también una fuerte emisión infrarroja. 

"Monitoreamos de cerca S2, y por supuesto siempre supervisamos Sagitario A*”, explicó Pfuhl. “Durante nuestras observaciones, tuvimos la suerte de apreciar tres destellos brillantes alrededor del agujero negro, ¡lo que fue una afortunada coincidencia!”.

Esta emisión, proveniente de electrones altamente energéticos muy cercanos al agujero negro, fue observada como tres prominentes destellos brillantes, y coincide exactamente con las predicciones teóricas sobre zonas calientes orbitando cerca de un agujero negro con una masa de cuatro millones de veces la del Sol [4]. Se cree que los destellos se originan a partir de interacciones magnéticas en el gas muy caliente que orbita muy cerca de Sagitario A*. 

Reinhard Genzel, del Instituto Max Planck de Física Extraterrestre (MPE) en Garching, Alemania, quien dirigió el estudio, explicó: “Este siempre fue uno de nuestros proyectos soñados, pero nunca pensamos que pudiese hacerse realidad tan pronto”. Refiriéndose a la antigua suposición de que Sagitario A* es un agujero negro supermasivo, Genzel concluyó que “el resultado es una rotunda confirmación del paradigma sobre el agujero negro masivo”. 




El instrumento GRAVITY de ESO que se caracteriza por ser extremadamente sensible ha sumado más pruebas a la antigua suposición de que un agujero negro supermasivo se esconde en el centro de la Vía Láctea. Nuevas observaciones muestran aglomeraciones de gas girando a aproximadamente un 30% de la velocidad de la luz en una órbita circular justo a las afueras de su horizonte de sucesos. El primer material fue observado orbitando cerca del punto de no retorno, y las observaciones más detalladas ya muestran material orbitando muy cerca de un agujero negro.


Notas

[1] Esta investigación fue llevada a cabo por científicos del Instituto Max Planck de Física Extraterrestre (MPE), el Observatorio de Paris, la Universidad Grenoble Alpes, el CNRS, el Instituto Max Planck de Astronomía, la Universidad de Colonia, la institución portuguesa CENTRA – Centro de Astrofísica y Gravitación y ESO. 

[2] Son velocidades relativistas aquellas que son tan grandes que los efectos de la Teoría de la Relatividad de Einstein se vuelven importantes. En el caso del disco de acreción que rodea a Sagitario A*, el gas se mueve a aproximadamente un 30% de la velocidad de la luz. 

[3] GRAVITY fue desarrollado por una colaboración formada por el Instituto Max Planck de Física Extraterrestre (Alemania), LESIA del Observatorio de París– PSL/CNRS/Universidad de la Sorbona/Universidad París Diderot e IPAG de la Universidad Grenoble Alpes/CNRS (Francia), el Instituto Max Planck de Astronomía (Alemania), la Universidad de Colonia (Alemania), la institución portuguesa CENTRA – Centro de Astrofísica y Gravitación (Portugal) y ESO. 

[4] La masa solar es una unidad utilizada en astronomía. Es igual a la masa de nuestra estrella más cercana, el Sol, y tiene un valor de 1.989 × 1030 kg. Esto significa que Sgr A* tiene una masa 1,3 billones de veces superior a la de la Tierra.

Fuente: http://elblogantares.blogspot.com/2018/11/las-observaciones-mas-detalladas-de.html

domingo, 14 de octubre de 2018

The Milky Way Could Be Spreading Life From Star to Star




For almost two centuries, scientists have theorized that life may be distributed throughout the Universe by meteoroids, asteroids, planetoids, and other astronomical objects. This theory, known as Panspermia, is based on the idea that microorganisms and the chemical precursors of life are able to survive being transported from one star system to the next.
Expanding on this theory, a team of researchers from the Harvard Smithsonian Center for Astrophysics (CfA) conducted a study that considered whether panspermia could be possible on a galactic scale. According to the model they created, they determined that the entire Milky Way (and even other galaxies) could be exchanging the components necessary for life.
The study, “Galactic Panspermia“, recently appeared online and is being reviewed for publication by the Monthly Notices of the Royal Astronomical Society. The study was led by Idan Ginsburg, a visiting scholar at the CfA’s Institute for Theory and Computation (ITC), and included Manasvi Lingam and Abraham Loeb – an ITC postdoctoral researcher and the director of the ITC and the Frank B. Baird Jr. Chair of Science at Harvard University, respectively.
A new study expands on the classical theory of panspermia, addressing whether or not life could be distributed on a galactic scale. Credit: NASA
As they indicate their study, most of the past research into panspermia has focused on whether life could had been distributed through the Solar System or neighboring stars. More specifically, these studies addressed the possibility that life could have been transferred between Mars and Earth (or other Solar bodies) via asteroids or meteorites. For the sake of their study, Ginsburg and his colleagues cast a wider net, looking at the Milky Way Galaxy and beyond.
As Dr. Loeb told Universe Today via email, the inspiration for this study came from the first-known interstellar visitor to our Solar System – the asteroid ‘Oumuamua:
“Following that discovery, Manasvi Lingam and I wrote a paper where we showed that interstellar objects like `Oumuamua could be captured through their gravitational interaction with Jupiter and the Sun. The Solar System acts as a gravitational “fishing net” that contains thousands of bound interstellar objects of this size at any given time. These bound interstellar objects could potentially plant life from another planetary system and in the Solar System. The effectiveness of the fishing net is larger for a binary star system, like the nearby Alpha Centauri A and B, which could capture objects as large as the Earth during their lifetime.”
“We expect most objects to likely be rocky, but in principle they could also be icy (cometary) in nature,” Ginsburg added. “Regardless of whether they are rocky or icy, they can be ejected from their host system and travel potentially thousands of light-years away. In particular the center of the galaxy can act as a powerful engine to seed the Milky Way.”
Artist’s impression of the first interstellar asteroid/comet, “Oumuamua”. This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser
This study builds on previous research conducted by Ginsburg, Loeb and Gary A. Wegner of the Wilder Lab at Dartmouth College. In a 2016 study published in the Monthly Notices of the Royal Astronomical Society, they suggested that the center of the Milky Way could be the instrument through which hypervelocity stars are ejected from a binary system and then captured by another system.
For the sake of this study, the team created an analytic model to determine just how likely it is that objects are being traded between star systems on a galactic scale. As Loeb explained:
“In the new paper we calculated how many rocky objects that are ejected from one planetary system can be trapped by another one across the entire Milky Way galaxy. If life can survive for a million years, there could be over a million `Oumuamua-size objects that are captured by another system and can transfer life between stars. Therefore panspermia is not exclusively limited to solar-system sized scales, and the entire Milky Way could potentially be exchanging biotic components across vast distances.”
“[O]ur physical model calculated the capture rate of objects in the Milky Way which strongly depend upon velocity and the lifetime of any organisms that may travel on the object,” added Ginsburg. “No one had done such a calculation before, and we feel this is quite novel and exciting.”
From this, they found that the possibility of galactic panspermia came down to a few variables. For one, the capture rate of objects ejected from planetary systems is dependent on the velocity dispersion as well as the size of the captured object. Second, the probability that life could be distributed from one system to another is strongly dependent upon the survival lifetime of the organisms.
An artist’s conception of a hypervelocity star that has escaped the Milky Way. Credit: NASA
However, in the end they found that even in the worst case scenarios, the entire Milky Way could be exchanging biotic components across vast distances. In short, they determined panspermia is viable on galactic scales, and even between galaxies. As Ginsburg said:
“Smaller objects are more likely to be captured. If you consider Saturn’s moon Enceladus (which is very interesting in itself) as an example, we estimate that as many as 100 million such life-bearing objects may have traveled from one system to another! Again, I think it’s important to note that our calculation is for life-bearing objects.”
The study also bolsters a possible conclusion raised in two previous studies conducted by Loeb and James Guillochon (an Einstein Fellow with the ITC) back in 2014. In the first study, Loeb and Guillochon traced the presence of hypervelocity stars (HVSs) to galactic mergers, which caused them to leave their respective galaxies at semi-relativistic speeds – one-tenth to one-third the speed of light.
In the second study, Guillochon and Loeb determined that there are roughly a trillion HVSs in intergalactic space and that hypervelocity stars could bring their planetary systems along with them. These systems would therefore be capable of spreading life (which could even take the form of advanced civilizations) from one galaxy to another.
In addition to small objects (like meteoriods), life could be distributed throughout our galaxy by interstellar asteroids, and between galaxies by stars systems. Credit: NASA/Jenny Mottor
“In principle, life could even be transferred between galaxies, since some stars escape from the Milky Way,” said Loeb. “Several years ago, we showed with Guillochon that the Universe is full of a sea of stars that were ejected from galaxies at speeds up to a fraction of the speed of light through pairs of massive black holes (formed during galaxy mergers) which act as slingshots. These stars could potentially transfer life throughout the Universe.”
As it stands, this study is sure to have immense implications for our understanding of life as we know it. Rather than coming to Earth on a meteorite, possibly from Mars or somewhere else in the Solar System, the necessary building blocks for life could have arrived on Earth from another star system (or another galaxy) entirely.
Perhaps someday we will encounter life beyond our Solar System that bears some resemblance to our own, at least at the genetic level. Perhaps we may even come across some advanced species that are distant (very distant) relatives, and collectively ponder where the basic ingredients that made us all possible came from.
Fuente: https://www.universetoday.com/140223/the-milky-way-could-be-spreading-life-from-star-to-star/
Further Reading: arXiv

miércoles, 10 de octubre de 2018

¿Puede la Teoría de Cuerdas explicar la expansión acelerada del Universo?

ABC Físicos de todo el mundo discuten sobre la posibilidad de que la Teoría de Cuerdas pueda incluir conceptos como el de energía oscura
Una nueva conjetura está revolucionando a los físicos, especialmente a aquellos que creen y sustentan la Teoría de Cuerdas, la idea según la cual las partículas subatómicas, que generalmente se representan como puntos, consisten en realidad en la vibración de objetos aún más pequeños y cuyo aspecto recuerda al de cuerdas o filamentos. Un electrón, por ejemplo, no sería un simple punto sin estructura interna, sino un conjunto de cuerdas minúsculas que vibran en un espaciotiempo de once dimensiones.
Recientes investigaciones parecían haber conseguido arrinconar e invalidar en gran parte la teoría, pero el autor de la nueva hipótesis, el físico Timm Wrase, de la Universidad de Viena, le acaba de proporcionar un nuevo balón de oxígeno. Sus resultados, que están provocando acaloradas discusiones académicas en todo el mundo, se acaban de publicar en Physical Review D. El artículo se puede encontrar también en ArXiv.org.
Todo empezó el pasado mes de Junio, cuando un equipo de investigadores de la Universidad de Harvard y el Instituto de Tecnología de California, capitaneados por el físico teórico Cumrun Vafa, publicaron un artículo cuyas conclusiones eran un auténtico mazazo para la Teoría de Cuerdas. De hecho, decía el estudio, esa teoría es "fundamentalmente incompatible" con la energía oscura, pero como resulta que solo con la energía oscura podemos explicar la expansión acelerada del Universo, la Teoría de Cuerdas tenía que estar equivocada.
El destino de la controvertida teoría parecía sellado, pero Timm Wrase se dio cuenta enseguida de que algo extraño sucedía con el artículo de Harvard. Y es que sus conclusiones parecían ser incompatibles con la existencia del bosón de Higgs, que fue descubierto en 2012 por los físicos del CERN, en Suiza. Wrase y sus colegas de las universidades de Columbia en Nueva York y de Heilderberg publicaron entonces sus cálculos en el citado artículo de Physical Review y de inmediato una serie interminable de acaloradas discusiones sobre la Teoría de Cuerdas y la energía oscura empezaron a propagarse por todo el planeta.
Como sabemos muy bien, el mayor desafío de la Física moderna consiste en explicar por qué las leyes que gobiernan la realidad macroscópica (la de los objetos formados por múltiples partículas, como mesas, personas o estrellas) no funcionan cuando se aplican al mundo subatómico de las partículas individuales, que parecen seguir otras leyes completamente diferentes.
En este sentido, la Teoría de Cuerdas ha suscitado muchas esperanzas, ya que parece ser capaz de resolver la cuestión y agrupar en un único cuerpo teórico a todas las fuerzas de la naturaleza para que sean capaces de describir el mundo físico al completo, desde las partículas más pequeñas hasta las estructuras más grandes del Universo. Todo un sueño, pues, para los físicos: un único cuerpo de leyes capaz de explicar la realidad desde lo más pequeño a lo más grande.
A menudo, sin embargo, se ha acusado a la Teoría de Cuerdas de ofrecer una gran cantidad de resultados matemáticos abstractos y muy pocas predicciones susceptibles de ser comprobadas experimentalmente. Pero últimamente esa situación ha cambiado, y la comunidad de físicos que apoyan la teoría discuten ahora sobre una cuestión que está íntimamente relacionada con los experimentos cósmicos que miden la expansión del Universo. Como se sabe, el Universo se expande, es decir, cada vez se hace más grande. Pero no solo crece constantemente, sino que su expansión, además, se está acelerando, de forma que crece cada vez más deprisa. Un hallazgo que valió, en 2011, el Premio Nobel de Física a los investigadores Brian Schmidt y Adam Riess.

Energía oscura y expansión del Universo

Por lo que sabemos, esa expansión acelerada solo puede explicarse suponiendo que existe una forma adicional de energía. Una energía previamente desconocida y a la que hoy nos referimos como "energía oscura".
Originalmente, la idea viene del mismísimo Albert Einstein, que la agregó en forma de una "constante cosmológica" a su teoría de la Relatividad General. Pero Einsten no hizo eso para explicar un Universo en expansión, sino para todo lo contrario. Para él, en efecto, el Universo era estático y se encontraba en un perfecto equilibrio. Por eso, cuando en 1929 Edwin Hubble demostró sin lugar a dudas que en realidad el Universo se está expandiendo, Einstein calificó la modificación de sus ecuaciones como el mayor error de toda su vida. Los años posteriores, sin embargo, demostraron que Einstein tenía razón incluso cuando se equivocaba, y tras el descubrimiento de la expansión acelerada del cosmos, su constante cosmológica fue reintroducida como "energía oscura" en los modelos cosmológicos actuales.
"Durante mucho tiempo -asegura Timm Wrase- pensamos que una energía oscura como esa podría acomodarse muy bien en la Teoría de Cuerdas". De hecho, la teoría predice la existencia de una serie de partículas adicionales que pueden describirse como campos. Dichos campos tienen un estado de energía mínima, algo parecido a una manzana que permanece dentro de una taza. La manzana siempre estará en el punto más bajo del recipiente, donde ya no se moverá. Si estuviera en cualquier otra parte, su energía sería mayor. Pero el hecho de que se encuentre justo en el fondo no significa que la manzana no tenga energía en absoluto. De hecho, podríamos colocar la taza con la manzana en el suelo, pero también encima de una mesa, donde la manzana tendría más energía, aunque seguiría sin poder moverse porque aún estaría en un estado de energía mínima dentro del recipiente.
"En la Teoría de Cuerdas -prosigue Wrase- existen campos que podrían explicar la energía oscura de una forma similar: localmente, estarían en un estado mínimo de energía, pero aún así su energía tendría un valor superior a cero. Esos campos serían la fuente de la llamada energía oscura. Y con ella podríamos explicar la expansión acelerada del Universo".
De esta forma, y justo cuando la Teoría de Cuerdas parecía estar cobrando nuevas fuerzas, se publicó, el pasado 25 de Junio, el artículo de Cumrun Vafa, de la Universidad de Harvard y uno de los teóricos de cuerdas más renombrados del mundo, en el que sugería que tales campos de energía positiva "en forma de cuenco" no son posibles en la Teoría de Cuerdas.
Y fue Timm Wrase quien se dio cuenta rápidamente de las implicaciones de esta afirmación: "Si eso fuera cierto -afirma el físico- la expansión acelerada del Universo, tal y como la hemos imaginado hasta ahora, no sería posible. La expansión acelerada tendría que ser descrita por un campo con propiedades bastante diferentes, como un plano inclinado en el que una bola rueda cuesta abajo, perdiendo energía potencial". Pero en ese caso, la cantidad de energía oscura en el universo cambiaría con el tiempo, y la expansión acelerada del universo podría algún día llegar a detenerse. La gravedad podría entonces volver a juntar todo el material y comprimirlo en un punto, similar al Big Bang.
Pero esta no es toda la historia. "La conjetura de Cumrun Vafa, que prohibe ciertos tipos de campos -explica el investigador-, también prohibiría cosas que ya sabemos que existen". Cosas como el campo de Higgs, que también tiene propiedades que deberían estar prohibidas en la conjetura de Vafa. Sin embargo, la existencia del campo de Higgs es un hecho comprobado experimentalmente, y su hallazgo hizo merecedores a Peter Higgs y a François Englert del Nobel de Física en 2013.
Sin pérdida de tiempo, en Julio de este año, apenas un mes después de la publicación de Vafa, Wrase hizo públicas sus conclusiones en ArXiv.org. Lo que provocó de inmediato fuertes controversias en la comunidad internacional de físicos. Y ahora su trabajo, tras pasar la revisión por pares, ha sido publicado en Physical Review.
"Esta controversia es algo bueno para la Teoría de Cuerdas - asegura Timm Wrase- De repente, muchas personas tienen ideas completamente nuevas en las que nadie había pensado antes". Wrase y su equipo investigan ahora qué campos en concreto están permitidos en la Teoría de Cuerdas y en qué puntos violan la conjetura de Vafa. "Tal vez eso nos lleve a nuevas y emocionantes ideas sobre la naturaleza de la energía oscura, y eso sería un gran éxito".
Afortunadamente, las hipótesis que surjan a partir de ahora podrán ser, al menos en parte, comprobadas experimentalmente. En los próximos años, en efecto, misiones como la Euclides, de la Agencia Espacial Europea, podrán medir la expansión acelerada del Universo con más precisión que nunca.
Fuente: https://www.abc.es/ciencia/abci-puede-teoria-cuerdas-explicar-expansion-acelerada-universo-201810092014_noticia.html

Captada una señal de ondas gravitacionales nunca vista

  Los detectores LIGO y Virgo captan dos choques de agujeros negros contra estrellas de neutrones, los astros más densos del universo. Dos d...