sábado, 20 de abril de 2019

Matter-antimatter asymmetry in charmed quarks




Why does matter dominate our universe?
Credit: © vovan / Fotolia
Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.
Distinguished Professor Sheldon Stone says the findings are a first, although matter-antimatter asymmetry has been observed before in particles with strange quarks or beauty quarks.
He and members of the College's High-Energy Physics (HEP) research group have measured, for the first time and with 99.999-percent certainty, a difference in the way D0 mesons and anti-D0 mesons transform into more stable byproducts.
Mesons are subatomic particles composed of one quark and one antiquark, bound together by strong interactions.
"There have been many attempts to measure matter-antimatter asymmetry, but, until now, no one has succeeded," says Stone, who collaborates on the Large Hadron Collider beauty (LHCb) experiment at the CERN laboratory in Geneva, Switzerland. "It's a milestone in antimatter research."
The findings may also indicate new physics beyond the Standard Model, which describes how fundamental particles interact with one another. "Till then, we need to await theoretical attempts to explain the observation in less esoteric means," he adds.
Every particle of matter has a corresponding antiparticle, identical in every way, but with an opposite charge. Precision studies of hydrogen and antihydrogen atoms, for example, reveal similarities to beyond the billionth decimal place.
When matter and antimatter particles come into contact, they annihilate each other in a burst of energy -- similar to what happened in the Big Bang, some 14 billion years ago.
"That's why there is so little naturally occurring antimatter in the Universe around us," says Stone, a Fellow of the American Physical Society, which has awarded him this year's W.K.H. Panofsky Prize in Experimental Particle Physics.
The question on Stone's mind involves the equal-but-opposite nature of matter and antimatter. "If the same amount of matter and antimatter exploded into existence at the birth of the Universe, there should have been nothing left behind but pure energy. Obviously, that didn't happen," he says in a whiff of understatement.
Thus, Stone and his LHCb colleagues have been searching for subtle differences in matter and antimatter to understand why matter is so prevalent.
The answer may lie at CERN, where scientists create antimatter by smashing protons together in the Large Hadron Collider (LHC), the world's biggest, most powerful particular accelerator. The more energy the LHC produces, the more massive are the particles -- and antiparticles -- formed during collision.
It is in the debris of these collisions that scientists such as Ivan Polyakov, a postdoc in Syracuse's HEP group, hunt for particle ingredients.
"We don't see antimatter in our world, so we have to artificially produce it," he says. "The data from these collisions enables us to map the decay and transformation of unstable particles into more stable byproducts."
HEP is renowned for its pioneering research into quarks -- elementary particles that are the building blocks of matter. There are six types, or flavors, of quarks, but scientists usually talk about them in pairs: up/down, charm/strange and top/bottom. Each pair has a corresponding mass and fractional electronic charge.
In addition to the beauty quark (the "b" in "LHCb"), HEP is interested in the charmed quark. Despite its relatively high mass, a charmed quark lives a fleeting existence before decaying into something more stable.
Recently, HEP studied two versions of the same particle. One version contained a charmed quark and an antimatter version of an up quark, called the anti-up quark. The other version had an anti-charm quark and an up quark.
Using LHC data, they identified both versions of the particle, well into the tens of millions, and counted the number of times each particle decayed into new byproducts.
"The ratio of the two possible outcomes should have been identical for both sets of particles, but we found that the ratios differed by about a tenth of a percent," Stone says. "This proves that charmed matter and antimatter particles are not totally interchangeable."
Adds Polyakov, "Particles might look the same on the outside, but they behave differently on the inside. That is the puzzle of antimatter."
The idea that matter and antimatter behaves differently is not new. Previous studies of particles with strange quarks and bottom quarks have confirmed as such.
What makes this study unique, Stone concludes, is that it is the first time anyone has witnessed particles with charmed quarks being asymmetrical: "It's one for the history books."
HEP's work is supported by the National Science Foundation.
Story Source:

Fuente: 
https://www.sciencedaily.com/releases/2019/03/190321130309.htm

Physicists Discover a Mysterious New Class of Particles Containing Five Quarks


main article image

Everything you see around you is made up of elementary particles called quarks and leptons, which can combine to form bigger particles such as protons or atoms.
But that doesn't make them boring – these subatomic particles can also combine in exotic ways we've never spotted.
Now CERN's LHCb collaboration has announced the discovery of a clutch of new particles dubbed "pentaquarks". The results can help unveil many mysteries of the theory of quarks, a key part of the standard model of particle physics.
Quarks were first proposed to explain the untidy slew of new particles discovered in cosmic ray and collider experiments in the mid 20th century. This growing "zoo" of apparently fundamental particles caused consternation among physicists, who have a natural bias towards simplicity and order – and hate having to remember more than a few basic principles.
The famous Italian physicist Enrico Fermi captured the mood of his colleagues when he said"Young man, if I could remember the names of all these particles, I would have been a botanist".
Fortunately, in the 1960s, the American physicist Murray Gell-Mann noticed patterns in the particle zoo, similar to those spotted by Dimitri Mendeleev when he drew up the periodic table of the chemical elements.
Just as the periodic table implied the existence of things smaller than atoms, Gell-Mann's theory suggested the existence of a new class of fundamental particles. Particle physicists were eventually able to explain the hundreds of particles in the zoo as being made up of a much smaller number of truly fundamental particles called quarks.

Particles Containing 5 Quarks Discovered at the Large Hadron Collider

The Large Hadron Collider

Mystery hadrons

There are six types of quarks in the standard model – down, up, strange, charm, bottom and top. These also have "antimatter" companions – it is believed that every particle has an antimatter version that is virtually identical to itself, but with the opposite charge. '
Quarks and antiquarks get bound together to make particles known as hadrons.
According to Gell-Mann's model, there are two broad classes of hadrons. One is particles made of three quarks called baryons (which include the protons and neutrons that make up the atomic nucleus) and the other particles made of a quark and an antiquark known as mesons.
Until recently, baryons and mesons were the only types of hadrons that had been seen in experiments. However, back in the 1960s, Gell-Mann also raised the possibility of more exotic combinations of quarks, such as tetraquarks (two quarks and two antiquarks) and pentaquarks (four quarks and one antiquark).
In 2014, LHCb, which runs one of the four giant experiments at CERN's Large Hadron Collider, published a result showing that the snappily named Z(4430)+ particle was a tetraquark. This started a flurry of interest in new exotic hadrons.
Then, in 2015, LHCb announced the discovery of the first ever pentaquark, adding a brand new class of particle to the hadron family.
The results presented by LHCb today expand upon that first pentaquark discovery by finding additional such particles. This was possible thanks to a big chunk of new data recorded during the second run of the Large Hadron Collider.
Liming Zhang, an associate professor at Tsinghua University in Beijing and one of the physicists who made the measurement, said that "we now have ten times more data than in 2015, which allows us to see more exciting and finer structures than we could before."
When Liming and his colleagues examined the original pentaquark discovered in 2015, they were surprised to find that it had split in two. The original pentaquark was actually two separate pentaquark particles that had such similar masses that they originally looked like a single particle.
As if two pentaquarks for the price of one wasn't exciting enough, LHCb also found a third pentaquark with a slightly smaller mass than the other two. All three pentaquarks are made of one down quark, two up quarks, a charm quark and a charm antiquark.
The big question now is: what is the precise internal structure of these pentaquarks?
One option is that they are truly made of five quarks, with all of them mixed together evenly within a single hadron. Another possibility is that the pentaquarks are really a baryon and a meson stuck together to form a loosely bound molecule, similar to the way that protons and neutrons bind together inside the atomic nucleus.
Tomasz Skwarnicki, a professor of physics at Syracuse University in New York who also worked on the measurement, told me that the new companion state "is at a mass which offers hints about internal structure of pentaquarks".
The most likely option is that these pentaquarks are baryon-meson molecules, he added. To be absolutely sure, physicists will need more experimental data, as well as further studies from theorists, meaning that the story of these pentaquarks is far from over.
These results complete a week of exciting new announcements from LHCb, which included the discovery of a new kind of matter-antimatter asymmetry. The LHC has yet to discover any particles beyond the standard model that could help to explain mysteries like dark matter, an invisible but unknown substance that makes up the majority of matter in the universe.
But these exciting measurements show that there is still lots to learn about the particles and forces of the standard model. It may be that our best chance of finding answers to the big questions facing fundamental physics in the 21st century lies in more detailed studies of the particles we already know about rather than discovering new ones.
Either way, we still have a great deal to discover. The Conversation
Harry Cliff, Particle physicist, University of Cambridge.


Particles Containing 5 Quarks Discovered at the Large Hadron Collider

First theorized by Murray Gell-Mann in 1964, pentaquarks are a new state of matter that has finally been discovered at the Large Hadron Collider.
In March 2019, physicists with the LHCb Collaboration at the Large Hadron Collider near Geneva, Switzerland, announced that they have discovered an ultra rare particle that was first predicted over 50 years ago.
That particle, called a pentaquark, is a hadron that is comprised of five quarks. Hadrons are particles made of two or more quarks and held together by the strong force. The strong nuclear force keeps protons within the nucleus of atoms together by the exchange of particles called mesons. This constant exchange is what holds the nucleus together. 
Until the early 2000s, scientists had seen only two types of hadron:
Baryons - containing three quarks, for example, protons and neutrons
Mesons containing one quark and one antiquark, for example the pi-meson.
Quarks are the fundamental building blocks of matter, they cannot be further broken down, and they come in six flavors: UpDownStrangeCharmTopBottom. Each of these flavors has an antimatter companion that is identical to it, but with the opposite charge.
In 2016, scientists discovered tetraquarks that contain two quarks and two antiquarks. The recent discovery of pentaquarks, which contain one down quark, two up quarks, a charm quark and a charm antiquark, was first proposed by physicist Murray Gell-Mann in 1964 when he realized that quark-antiquark pairs could be added to mesons and baryons to create heavier particles. In 1969, Gell-Mann received the Nobel Prize in physics for his work on the theory of elementary particles.
In 2015, evidence greater than 5 sigma was first seen of the first two pentaquarks, named Pc(4450)+ and Pc(4380)+. The four-digit number indicates the mass of the pentaquark in MeV/c2, making these pentaquarks more than four times heavier than a proton. Pc(4450)+ might actually be two separate pentaquarks, Pc(4440)+ and Pc(4457)+.
After a second run of the proton beam at CERN, scientists discovered a third pentaquark called Pc(4312)+, which had a statistical significance of sigma. The pentaquarks could be made of five quarks, but they could also be a baryon and a meson that are stuck together.

The Ultimate Fate of Neutron Stars

LHCb spokesperson Guy Wilkinson was quoted in The Guardian newspaper as saying, "One place where pentaquarks may be relevant is when stars collapse and form neutron stars, the final stage of collapse before some go on to make black holes. In that environment, it’s quite possible that pentaquarks are formed, and if that’s so, it could have significant consequences for what happens to the stars, what they look like and what is their ultimate fate."

This article is republished from The Conversation under a Creative Commons license. Read the original article.

miércoles, 10 de abril de 2019

Así es el primer agujero negro fotografiado por la humanidad

Publicado el 10 de Abril de 2019

El de M87 es el primer agujero negro del que tenemos una foto real tras 40 años de representaciones artísticas


Presentación del primer agujero negro fotografiado
Presentación del primer agujero negro fotografiado 
El de M87 es el primer agujero negro del que tenemos una foto real, después de 40 años  de imágenes generadas por ordenador o salidas de la mente de artistas. Los resultados han sido presentados esta tarde a través de siete ruedas de prensa simultáneas desde distintos puntos del mundo.

Casi un siglo después de que un Eclipse encumbrase a la fama a Einstein, sus ecuaciones brillan en forma de sumidero cósmico. El primer agujero negro ha sido cazado por el llamado Telescopio del Horizonte de Sucesos (EHT), un equipo internacional que ha orquestado el trabajo de ocho radiotelescopios terrestres, incluido el IRAM 30m de Sierra Nevada, en España. Un agujero negro es un objeto con tanta masa que atrae irremediablemente a todo cuanto se le acerca, incluida la luz, que queda engullida en su interior.


En España, el resultado de esta investigación se ha presentado en el CSIC desde Madrid. “Ya no hay más simulaciones. Estamos viendo, por la primera vez, un agujero negro real”, ha dicho en la rueda de prensa internacional desde Bruselas el ingeniero español Carlos Moedas, comisario europeo de I+D+i, quien ha subrayado que la “ciencia da una lección a los políticos”, en relación a la colaboración internacional.
El equipo ha perseguido dos objetos particularmente interesantes: el corazón de nuestra galaxia, donde habita el agujero negro supermasivo Sagitario A*, y el de la galaxia Virgo A (M87). El primero, pone a bailar a todos los objetos de la Vía Láctea y su existencia fue confirmada en 2002 por Reinhard Genzel. El segundo es una de las fuentes más potentes de radio del universo.
Un agujero negro está revestido normalmente de gas. La enorme gravedad generada en sus inmediaciones provoca que gire en espiral. Se forma lo que se conoce como disco de acreción. La velocidad a la que gira el material que no termina de entrar en la garganta del agujero hace que se encienda en forma de radiación electromagnética. La luz visible es parte de ella.

Una proeza para dar la razón a Einstein

El EHT estuvo realizando fotos durante 10 días en abril de 2017. Al equipo astronómico les ha llevado dos años cotejar los resultados. Los datos eran tan voluminosos, que era impensable transmitirlos por red. Tuvieron que ser almacenados en discos duros y trasladados en avión al Observatorio Haystack del MIT (EE.UU.) y al Instituto Max Planck de Bonn (Alemania). Hubo que esperar a diciembre de 2017 para recoger los discos del telescopio antártico, ya que hasta entonces era invierno y durante esos meses nada puede acceder a él por las condiciones meteorológicas.
“Muchas de las características de la imagen observada coinciden con nuestra comprensión teórica sorprendentemente bien”, han admitido los científicos en la presentación mundial de este hito.
La imagen muestra un anillo brillante formado cuando la luz se curva en la gravedad intensa alrededor de un agujero negro que es 6.500 millones de veces más masivo que el Sol, de acuerdo con los cálculos realizados a partir de la observación.
El primer agujero negro retratado, explicado
El primer agujero negro retratado, explicado 
Esta imagen largamente buscada proporciona la evidencia más sólida hasta la fecha de la existencia de agujeros negros supermasivos y abre una nueva ventana al estudio de los agujeros negros, sus horizontes de eventos y la gravedad, según destaca en un comunicado el proyecto EHT.
“Hemos tomado la primera fotografía de un agujero negro”, proclamó el director de proyectos de EHT, Sheperd S. Doeleman, del Center for Astrophysics Harvard Smithsonian. Los agujeros negros son objetos cósmicos extraordinarios con masas enormes pero tamaños extremadamente compactos. La presencia de estos objetos afecta su entorno de manera extrema, deformando el espacio-tiempo y sobrecalentando cualquier material circundante.
“Si estamos inmersos en una región brillante, como un disco de gas brillante, esperamos que un agujero negro cree una región oscura similar a una sombra, algo predicho por la relatividad general de Einstein que nunca hemos visto antes”, explicó el presidente del Consejo Científico del EHT, Heino Falcke, de la Universidad de Radboud, Países Bajos. “Esta sombra, causada por la inclinación gravitacional y la captura de luz por el horizonte de sucesos, revela mucho sobre la naturaleza de estos objetos fascinantes y nos permitió medir la enorme masa del agujero negro de M87”.











It’s Finally here. The First Ever Image of a Black Hole




We have taken the first picture of a black hole.

EHT project director Sheperd S. Doeleman of the Center for Astrophysics | Harvard & Smithsonian.
What was once un-seeable can now be seen. Black holes, those difficult-to-understand singularities that may reside at the center of every galaxy, are becoming seeable. The Event Horizon Telescope (EHT) has revealed the first-ever image of a black hole, and with this image, and all the science behind it, they may help crack open one of the biggest mysteries in the Universe.
The black hole in this image resides at the center of M87, a massive galaxy that’s in the Virgo cluster of galaxies. Called M87* (M87-star), it’s a behemoth, at about 6.5 billion times the mass of the Sun. M87* is about 55 million light years from Earth. For now we only have this picture of M87*, but pictures of our very own black hole, Sagittarius A* at the center of the Milky Way, are still coming.

This may be the worst kept secret of the past couple weeks. Ever since the EHT said they would be announcing some important results, the excitement has built.
This is an extraordinary scientific feat accomplished by a team of more than 200 researchers.

EHT project director Sheperd S. Doeleman of the Center for Astrophysics | Harvard & Smithsonian.
We have taken the first picture of a black hole,” said EHT project director Sheperd S. Doeleman of the Center for Astrophysics | Harvard & Smithsonian. “This is an extraordinary scientific feat accomplished by a team of more than 200 researchers.

The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. The first image is of M87* at the center of the M87 galaxy. Image Credit: EHT Collaboration.
The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. The first image is of M87* at the center of the M87 galaxy. Image Credit: EHT Collaboration.

We already knew, or were pretty sure we knew, what it would look like. Even a year ago, scientists at the EHT were pretty certain, and they released a simulated image of what this first-ever image of a black hole would look like. But with science, you don’t know until you know. That’s why this image is so important.

Simulated view of a black hole released by the EHT in April, 2017. Credit: Bronzwaer/Davelaar/Moscibrodzka/Falcke, Radboud University
Simulated view of a black hole released by the EHT in April, 2017. Credit: Bronzwaer/Davelaar/Moscibrodzka/Falcke, Radboud University

The image matches with what astrophysicists theorized it would look like. This is a real feather in the cap for science, and shows the power of theory developed from evidence. It shows that even though black holes are mysterious, and that their ultimate nature is still unknowable at this moment in history, we can still nibble around the edges. Over time we can remove more and more of the mystery until we understand what remains.
“Once we were sure we had imaged the shadow, we could compare our observations to extensive computer models that include the physics of warped space, superheated matter and strong magnetic fields. Many of the features of the observed image match our theoretical understanding surprisingly well,” remarks Paul T.P. Ho, EHT Board member and Director of the East Asian Observatory [5]. “This makes us confident about the interpretation of our observations, including our estimation of the black hole’s mass.
The confrontation of theory with observations is always a dramatic moment for a theorist. It was a relief and a source of pride to realise that the observations matched our predictions so well,” elaborated EHT Board member Luciano Rezzolla of Goethe Universität, Germany.

An optical image of the M87 galaxy captured by the European Southern Observatory's Very Large Telescope. M87* lies at the very center of that bright mass.Image Credit: ESO
An optical image of the M87 galaxy captured by the European Southern Observatory’s Very Large Telescope. M87* lies at the very center of that bright mass. Image Credit: ESO

Black holes are extreme objects. They are massive, almost incomprehensibly massive, yet in terms of size they are tiny. Because of their extreme nature, they affect their environment in extreme way.
As they attract matter to themselves with their massive gravitational pull, that matter begins to rotate around the hole, forming a disc. The closer it gets to the black hole, the faster the matter rotates. It heats up, and emits energy we can see. This is the source of light that can be imaged, even though the singularity at the center of M87* can not be seen.
What can be seen is the shadow that the black hole casts on this light.

This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc. This thin disc of rotating material consists of the leftovers of a Sun-like star which was ripped apart by the tidal forces of the black hole. Shocks in the colliding debris as well as heat generated in accretion led to a burst of light, resembling a supernova explosion.
This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc. This thin disc of rotating material consists of the leftovers of a Sun-like star which was ripped apart by the tidal forces of the black hole. Shocks in the colliding debris as well as heat generated in accretion led to a burst of light, resembling a supernova explosion.

If immersed in a bright region, like a disc of glowing gas, we expect a black hole to create a dark region similar to a shadow — something predicted by Einstein’s general relativity that we’ve never seen before,” explained chair of the EHT Science Council Heino Falcke of Radboud University, the Netherlands. “This shadow, caused by the gravitational bending and capture of light by the event horizon, reveals a lot about the nature of these fascinating objects and has allowed us to measure the enormous mass of M87’s black hole.


This artist’s impression depicts the black hole at the heart of the enormous elliptical galaxy Messier 87 (M87). This black hole was chosen as the object of paradigm-shifting observations by the Event Horizon Telescope. The superheated material surrounding the black hole is shown, as is the relativistic jet launched by M87’s black hole. 
ESO/M. Kornmesser
This artist’s impression depicts the black hole at the heart of the enormous elliptical galaxy Messier 87 (M87). This black hole was chosen as the object of paradigm-shifting observations by the Event Horizon Telescope. The superheated material surrounding the black hole is shown, as is the relativistic jet launched by M87’s black hole. 
ESO/M. Kornmesser

The EHT isn’t a single telescope. It’s more like a virtual telescope, and it’s more properly called a Very Long Baseline Interferometer. What that means is they’ve linked up radio antennae around the globe to observe the same object. This gives the telescope “high angular resolving power.” Basically, the bigger the ‘scope, the more detail we can see. And no telescope is as big as the Earth, except for the EHT. The extremely high resolving power of the EHT means it can see a credit card on the surface of the Moon.
The EHT combines the power of radio-telescope facilities in Hawaii, Mexico, high in the Chilean Atacama Desert, down in Antarctica, and other locations. The data they produce is taken to computing centers at the Max Planck Institute for radio astronomy and the MIT Haystack Observatory, where special atomic clocks are used to calibrate and combine the data, producing this image.
If one of humanity’s goals is to understand nature, then the people behind the Event Horizon Telescope are well on their way. The EHT isn’t done yet. There will be more science results coming from the over 200 researchers working on the project.


In anticipation of the first image of a black hole, Jordy Davelaar and colleagues built a virtual reality simulation of one of these fascinating astrophysical objects. Their simulation shows a black hole surrounded by luminous matter. This matter disappears into the black hole in a vortex-like way, and the extreme conditions cause it to become a glowing plasma. The light emitted is then deflected and deformed by the powerful gravity of the black hole. Image Credit: 
Jordy Davelaar et al./Radboud University/BlackHoleCam
In anticipation of the first image of a black hole, Jordy Davelaar and colleagues built a virtual reality simulation of one of these fascinating astrophysical objects. Their simulation shows a black hole surrounded by luminous matter. This matter disappears into the black hole in a vortex-like way, and the extreme conditions cause it to become a glowing plasma. The light emitted is then deflected and deformed by the powerful gravity of the black hole. Image Credit: 
Jordy Davelaar et al./Radboud University/BlackHoleCam

This first black hole image isn’t exactly a surprise, but the EHT may still reveal some surprising things about black holes.
The EHT is focused on two holes: M87* in Virgo, and Sagittarius A*, at the heart of our Milky Way galaxy. They represent two types of black holes. M87* emits jets of material, while Sag. A* doesn’t. We don’t why.
Images of Sag. A* are still coming, so stay tuned. Maybe the EHT will be able to answer why some black holes emit these relativistic jets, and why some don’t.
If you’re curious about black holes, and who isn’t, then the following video may contain some of the answers you’re looking for.


lunes, 8 de abril de 2019

Now We Know That Dark Matter Isn’t Primordial Black Holes




For over fifty years, scientists have theorized that roughly 85% of matter in the Universe’s is made up of a mysterious, invisible mass. Since then, multiple observation campaigns have indirectly witnessed the effects that this “Dark Matter” has on the Universe. Unfortunately, all attempts to detect it so far have failed, leading scientists to propose some very interesting theories about its nature.
One such theory was offered by the late and great Stephen Hawking, who proposed that the majority of dark matter may actually be primordial black holes (PBH) smaller than a tenth of a millimeter in diameter. But after putting this theory through its most rigorous test to date, an international team of scientists led from the Kavli Institute for the Physics and Mathematics of the Universe (IPMU) has confirmed that it is not.

The team was led by Hiroko Niikura, a PhD candidate student with the Kavli IPMU, and included researchers from Japan, India and the US. As they indicate in their paper, which recently appeared in the journal Nature Astronomy, the lack of results in dark matter research led them to consider Hawking’s theory, which he first suggested in 1974.

This illustration shows how gravitational lensing works. The gravity of a large galaxy cluster is so strong, it bends, brightens and distorts the light of distant galaxies behind it. Credit: NASA, ESA, L. Calcada
This theory posits that the majority of dark matter is made up of primordial black holes (PBH) formed shortly after the Big Bang. As Prof. Masahiro Takada, the principal investigator of the IMPU and a co-author on the paper, told Universe Today via email:
“What Prof. Hawking predicted was that, if there were little patches of overdensity in the early Universe, such patches could create black holes… Once black holes are formed, they would behave like dark matter (because it is invisible and interacts with other particles only via gravity).”
This theory is attractive because it does not rely on the existence of any exotic (but as of yet, undiscovered) particles. What’s more, shortly after Hawking proposed this idea, astrophysicists discovered that cosmic inflation could generate patches of overdensity in the early Universe due to quantum fluctuations, which could have resulted in black holes.
The team tested this theory by using the Subaru Telescope at the Mauna Kea Observatory in Hawaii to observe the neighboring Andromeda Galaxy, which is located about 2.54 million light years away. Unlike most galaxies in our cosmic neighborhood, Andromeda is one of only 100 or so that is approaching our galaxy – at a rate of 110 km per second (68 mi per second) – and is destined to collide with it.
Andromeda Galaxy. Credit: Wikipedia Commons/Adam Evans
These and other factors contributed to it being the best candidates to test Hawking’s theory, explained Prof. Takada:
“The Andromeda galaxy is the largest, nearby galaxy containing many stars inside. For example, Andromeda is much bigger than the Magellan clouds that are dwarf galaxies. Hence, IF we can observe stars in Andromeda at one time, we could find microlensing events of a star, the flicker of its brightness, due to a foreground black holes that are passing in front of the star on the sky.”
If Hawking’s theory were in fact correct, the space between Andromeda and our galaxy would be filled with PBHs. This would result in a gravitational lensing effect, where the gravitational force of all these tiny black holes would cause the light rays coming from Andromeda’s stars to bend and become magnified.
This effect, which was first predicted by Einstein and his Theory of General Relativity in 1915, has been used many times by astronomers to view distant objects by taking advantage of the presence of massive objects in between them and Earth. However, the opportunities for such events are rare, requiring a fortuitous alignment between the observer, the distant object and the intervening one.
To maximize their chances of capturing an event, the researchers team used the Subaru Telescope’s Hyper Suprime-Cam digital camera, which is able to capture whole images of the Andromeda galaxy in a single shot. They also took multiple images of the galaxy to make sure that they caught any brief flickers coming from Andromeda’s stars.

Artist’s conception shows two merging black holes similar to those detected by LIGO on January 4th, 2017. Credit: LIGO/Caltech
These flickers would indicate that a primordial black hole was passing in front of them, thus distorting and magnifying their light. As Prof. Takada explained:
“If dark matter is PBH rather than elementary particles such as WIMPs, it could pass in front of a star in Andromeda galaxy and cause a microlensing event, the flicker of its brightness changing with observation time. This timescale in the change of star brightness depends on mass and velocity of PBH. If PBH is dark matter, we have a good understanding of its velocity: it should move with ~200km/s in interstellar space as the rotation curve of our Milky Way or Andromeda galaxy shows.”
All told, the team took 190 consecutive images of Andromeda over the course of seven hours and examined them closely for indications of a possible event. Given the expected mass of primordial black holes, at least 1000 events were anticipated. However, the team found evidence of only one event, which would indicate that primordial black holes would constitute less than 0.1% of dark matter mass.
That being said, this one possible event (which lasted for about an hour) was a significant discovery, since it is precisely what astronomers would expect for a light-mass PBH. As Takada indicated, this could be indirect evidence of a PBH caused by cosmic inflation. At the same time, it could be evidence of stellar variability (i.e. a stellar flare), so more observations are necessary before anything can be said definitively.
Illustris simulation, showing the distribution of dark matter in 350 million by 300,000 light years. Galaxies are shown as high-density white dots (left) and as normal, baryonic matter (right). Credit: Markus Haider/Illustris
Looking ahead, the team is planning on conducting further observations of the Andromeda galaxy to confirm their analysis. They also hope to investigate a new theory that posits how binary black holes – which have become detectable by LIGO thanks to the gravitational waves events they create – might in fact be primordial black holes.
“In brief, our results can’t entirely exclude the PBH-dark matter scenario, so dark matter could be an unknown elementary particle such as Weakly Interacting Massive Particle (WIMP),” concludes Prof. Takada. “In this case, we hope that underground experiments or accelerator experiments such as LHC will find such dark matter particles.”
In the meantime, the search for elusive dark matter continues! And much like the first-ever detection of gravitational waves, this discovery will trigger a revolution in the field of astronomy. And as Takada said, “it would be a Novel Prize discovery!”
Further Reading: Kavli IPMUNature Astronomy

Captada una señal de ondas gravitacionales nunca vista

  Los detectores LIGO y Virgo captan dos choques de agujeros negros contra estrellas de neutrones, los astros más densos del universo. Dos d...